
Rhetoric Documentation
Release 0.2.0

Maxim Avanov

January 28, 2015

Contents

1 Why it is worth your while 3

2 Project premises 5

3 Installation 7

4 Integration with Django 9

5 Route Pattern Syntax 11

6 View Configuration Parameters 13
6.1 Non-Predicate Arguments . 13
6.2 Predicate Arguments . 13

7 Renderers 15
7.1 Built-in renderers . 15
7.2 Varying Attributes of Rendered Responses . 16
7.3 Request properties . 16

8 Predicates 17

9 @view_defaults Class Decorator 19

10 ADT 21

11 Sources 25

12 Authors 27

13 Changelog 29

14 Indices and tables 31

i

ii

Rhetoric Documentation, Release 0.2.0

Status: Beta, Unstable API.

Naive implementation of Pyramid-like routes for Django projects.

Contents 1

Rhetoric Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Why it is worth your while

There’s a great article on why Pyramid routing subsystem is so convenient for web developers - Pyramid view config-
uration: Let me count the ways.

As a person who uses Pyramid as a foundation for his pet-projects, and Django - at work, I (the author) had a good
opportunity to compare two different approaches to routing configuration provided by these frameworks. And I totally
agree with the key points of the article - Pyramid routes are more flexible and convenient for developers writing
RESTful services.

The lack of flexibility of standard Django url dispatcher motivated me to create this project. I hope it will be useful
for you, and if you liked the idea behind Rhetoric URL Dispatcher, please consider Pyramid Web Framework for one
of your future projects.

3

http://blog.delaguardia.com.mx/pyramid-view-configuration-let-me-count-the-ways.html
http://blog.delaguardia.com.mx/pyramid-view-configuration-let-me-count-the-ways.html
http://www.pylonsproject.org/

Rhetoric Documentation, Release 0.2.0

4 Chapter 1. Why it is worth your while

CHAPTER 2

Project premises

• Rhetoric components try to follow corresponding Pyramid components whenever possible.

• Integration with django applications shall be transparent to existing code whenever possible.

• Performance of Rhetoric URL Dispatcher is worse than of the one of Pyramid, due to naivety of the implemen-
tation and limitations imposed by the compatibility with Django API.

5

Rhetoric Documentation, Release 0.2.0

6 Chapter 2. Project premises

CHAPTER 3

Installation

Rhetoric is available as a PyPI package:

$ pip install Rhetoric

The package shall be compatible with Python2.7, and Python3.3 or higher.

7

Rhetoric Documentation, Release 0.2.0

8 Chapter 3. Installation

CHAPTER 4

Integration with Django

1. Replace django.middleware.csrf.CsrfViewMiddlewarewith rhetoric.middleware.CsrfProtectedViewDispatchMiddleware
in your project’s MIDDLEWARE_CLASSES:

1 # somewhere in a project_name.settings module
2

3 MIDDLEWARE_CLASSES = [
4 # ...
5 ’rhetoric.middleware.CsrfProtectedViewDispatchMiddleware’,
6 #’django.middleware.csrf.CsrfViewMiddleware’,
7 # ...
8]

2. Inside the project’s root urlconf (usually project_name.urls):

1 from django.conf.urls import patterns, include, url
2 # ... other imports ...
3 from rhetoric import Configurator
4

5 # ... various definitions ...
6

7 urlpatterns = patterns(’’,
8 # ... a number of standard django url definitions ...
9)

10

11 # Rhetorical routing
12 # ------------------
13 config = Configurator()
14 config.add_route(’test.new.routes’, ’/test/new/routes/{param:[a-z]+}’)
15 config.scan(ignore=[
16 # do not scan test modules included into the project tree
17 re.compile(’^.*[.]?tests[.]?.*$’).match,
18 # do not scan settings modules
19 re.compile(’^project_name.settings[_]?[_a-z09]*$’).match,
20])
21 urlpatterns.extend(config.django_urls())

3. Register views:

1 # project_name.some_app.some_module
2

3 from rhetoric import view_config
4

5

9

https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-ROOT_URLCONF

Rhetoric Documentation, Release 0.2.0

6 @view_config(route_name="test.new.routes", renderer=’json’)
7 def view_get(request, param):
8 return {
9 ’Hello’: param

10 }
11

12 @view_config(route_name="test.new.routes", renderer=’json’, request_method=’POST’)
13 def view_post(request, param):
14 return {
15 ’Hello’: ’POST’
16 }

4. From this point you can request /test/new/routes/<param> with different methods.

10 Chapter 4. Integration with Django

CHAPTER 5

Route Pattern Syntax

Note: This section is copied from Pyramid Docs, since Rhetoric provides the same pattern matching functionality.

The pattern used in route configuration may start with a slash character. If the pattern does not start with a slash
character, an implicit slash will be prepended to it at matching time. For example, the following patterns are equivalent:

{foo}/bar/baz

and:

/{foo}/bar/baz

A pattern segment (an individual item between / characters in the pattern) may either be a literal string (e.g. foo) or
it may be a replacement marker (e.g. {foo}) or a certain combination of both. A replacement marker does not need
to be preceded by a / character.

A replacement marker is in the format {name}, where this means “accept any characters up to the next slash character
and use this as the input parameter for a view callable.

A replacement marker in a pattern must begin with an uppercase or lowercase ASCII letter or an underscore, and can
be composed only of uppercase or lowercase ASCII letters, underscores, and numbers. For example: a, a_b, _b, and
b9 are all valid replacement marker names, but 0a is not.

A matchdict is the dictionary representing the dynamic parts extracted from a URL based on the routing pattern. It is
available as request.matchdict. For example, the following pattern defines one literal segment (foo) and two
replacement markers (baz, and bar):

foo/{baz}/{bar}

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2 -> {’baz’:u’1’, ’bar’:u’2’}
foo/abc/def -> {’baz’:u’abc’, ’bar’:u’def’}

It will not match the following patterns however:

foo/1/2/ -> No match (trailing slash)
bar/abc/def -> First segment literal mismatch

Replacement markers can optionally specify a regular expression which will be used to decide whether a path segment
should match the marker. To specify that a replacement marker should match only a specific set of characters as
defined by a regular expression, you must use a slightly extended form of replacement marker syntax. Within braces,
the replacement marker name must be followed by a colon, then directly thereafter, the regular expression. The default
regular expression associated with a replacement marker [^/]+matches one or more characters which are not a slash.
For example, under the hood, the replacement marker {foo} can more verbosely be spelled as {foo:[^/]+}. You

11

http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#route-pattern-syntax

Rhetoric Documentation, Release 0.2.0

can change this to be an arbitrary regular expression to match an arbitrary sequence of characters, such as {foo:\d+}
to match only digits.

It is possible to use two replacement markers without any literal characters between them, for instance
/{foo}{bar}. However, this would be a nonsensical pattern without specifying a custom regular expression to
restrict what each marker captures.

Segments must contain at least one character in order to match a segment replacement marker. For example, for the
URL /abc/:

• /abc/{foo} will not match.

• /{foo}/ will match.

12 Chapter 5. Route Pattern Syntax

CHAPTER 6

View Configuration Parameters

Note: This section is partly copied from the Pyramid documentation, since Rhetoric provides almost the same
functionality.

6.1 Non-Predicate Arguments

renderer

6.2 Predicate Arguments

route_name

request_method

api_version

New in version 0.1.7.

Available patterns:

13

http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/viewconfig.html#view-configuration-parameters

Rhetoric Documentation, Release 0.2.0

14 Chapter 6. View Configuration Parameters

CHAPTER 7

Renderers

Note: This section is copied from the Pyramid Renderers documentation, since Rhetoric provides almost the same
rendering functionality.

7.1 Built-in renderers

7.1.1 string: String Renderer

The string renderer is a renderer which renders a view callable result to a string. If a view callable returns a non-
Response object, and the string renderer is associated in that view’s configuration, the result will be to run the
object through the Python str function to generate a string.

7.1.2 json: JSON Renderer

The json renderer renders view callable results to JSON. By default, it passes the return value through the
django.core.serializers.json.DjangoJSONEncoder, and wraps the result in a response object. It
also sets the response content-type to application/json.

Here’s an example of a view that returns a dictionary. Since the json renderer is specified in the configuration for
this view, the view will render the returned dictionary to a JSON serialization:

from rhetoric import view_config

@view_config(renderer=’json’)
def hello_world(request):

return {’content’:’Hello!’}

The body of the response returned by such a view will be a string representing the JSON serialization of the return
value:

{"content": "Hello!"}

7.1.3 .html: Django Template Renderer

The .html template renderer renders views using the standard Django template language. When used, the view must
return a HttpResponse object or a Python dictionary. The dictionary items will then be used as the template context
objects.

15

http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#renderers

Rhetoric Documentation, Release 0.2.0

7.2 Varying Attributes of Rendered Responses

Note: This section is partly copied from the Pyramid Renderers documentation, since Rhetoric provides almost the
same API.

New in version 0.1.8.

Before a response constructed by a renderer is returned to Django, several attributes of the request are examined
which have the potential to influence response behavior.

View callables that don’t directly return a response should use the API of the django.http.HttpResponse
attribute available as request.response during their execution, to influence associated response behavior.

For example, if you need to change the response status from within a view callable that uses a renderer, assign the
status_code attribute to the response attribute of the request before returning a result:

1 from rhetoric import view_config
2

3 @view_config(name=’dashboard’, renderer=’dashboard.html’)
4 def myview(request):
5 request.response.status_code = 404
6 return {’URL’: request.get_full_path()}

Note that mutations of request.response in views which return a HttpResponse object directly will have no
effect unless the response object returned is request.response. For example, the following example calls
request.response.set_cookie, but this call will have no effect, because a different Response object is re-
turned.

1 from django.http import HttpResponse
2

3 def view(request):
4 request.response.set_cookie(’abc’, ’123’) # this has no effect
5 return HttpResponse(’OK’) # because we’re returning a different response

If you mutate request.response and you’d like the mutations to have an effect, you must return
request.response:

1 def view(request):
2 request.response.set_cookie(’abc’, ’123’)
3 return request.response

7.3 Request properties

request.json_body - http://docs.pylonsproject.org/projects/pyramid/en/latest/api/request.html#pyramid.request.Request.json_body

16 Chapter 7. Renderers

http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#varying-attributes-of-rendered-responses
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/request.html#pyramid.request.Request.json_body

CHAPTER 8

Predicates

http://docs.pylonsproject.org/docs/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view_predicate

17

http://docs.pylonsproject.org/docs/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view_predicate

Rhetoric Documentation, Release 0.2.0

18 Chapter 8. Predicates

CHAPTER 9

@view_defaults Class Decorator

Note: This section is copied from Pyramid Docs, since Rhetoric provides the same functionality.

New in version 0.1.7.

If you use a class as a view, you can use the rhetoric.view.view_defaults class decorator on the class
to provide defaults to the view configuration information used by every @view_config decorator that decorates a
method of that class.

For instance, if you’ve got a class that has methods that represent “REST actions”, all which are mapped to the same
route, but different request methods, instead of this:

1 from rhetoric import view_config
2

3 class RESTView(object):
4 def __init__(self, request, *args, **kw):
5 self.request = request
6

7 @view_config(route_name=’rest’, request_method=’GET’, renderer=’json’)
8 def get(self):
9 return {’method’: ’GET’}

10

11 @view_config(route_name=’rest’, request_method=’POST’, renderer=’json’)
12 def post(self):
13 return {’method’: ’POST’}
14

15 @view_config(route_name=’rest’, request_method=’DELETE’, renderer=’json’)
16 def delete(self):
17 return {’method’: ’DELETE’}

You can do this:

1 from rhetoric import view_config
2 from rhetoric import view_defaults
3

4 @view_defaults(route_name=’rest’, renderer=’json’)
5 class RESTView(object):
6 def __init__(self, request, *args, **kw):
7 self.request = request
8

9 @view_config(request_method=’GET’)
10 def get(self):
11 return {’method’: ’GET’}
12

19

http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/viewconfig.html#view-defaults-class-decorator

Rhetoric Documentation, Release 0.2.0

13 @view_config(request_method=’POST’)
14 def post(self):
15 return {’method’: ’POST’}
16

17 @view_config(request_method=’DELETE’)
18 def delete(self):
19 return {’method’: ’DELETE’}

In the above example, we were able to take the route_name=’rest’ and renderer=’json’ arguments out
of the call to each individual @view_config statement, because we used a @view_defaults class decorator to
provide the argument as a default to each view method it possessed.

Arguments passed to @view_config will override any default passed to @view_defaults.

20 Chapter 9. @view_defaults Class Decorator

CHAPTER 10

ADT

ADT stands for Algebraic Data Type.

project/payments/models.py

from rhetoric.adt import adt

Declare a new ADT
class PaymentMethod(adt):

Define variants in a form of VARIANT_NAME = variant_value
PAYPAL = ’paypal’
CHEQUE = ’cheque’
DATACASH = ’bank_transfer’
uncomment the following variant and you will get a configuration error like:
"Case payment_processor of PaymentMethod is not exhaustive.
Here is the variant that is not matched: GOOGLE_CHECKOUT"
You will have to implement a payment processor case (see below)
for the GOOGLE_CHECKOUT variant in order to fix the error.
#GOOGLE_CHECKOUT = ’google_checkout’

project/payments/logic.py

from project.payments.models import PaymentMethod

@PaymentMethod.PAYPAL(’payment_processor’)
def process_paypal():

pass

@PaymentMethod.CHEQUE(’payment_processor’)
def process_cheque():

pass

@PaymentMethod.DATACASH(’payment_processor’)
def process_datacash():

pass

Here’s the essence of ADT Consistency Check

- Uncomment the following definition and you will get a configuration error like:

21

Rhetoric Documentation, Release 0.2.0

- "Variant DATACASH of PaymentMethod is already bound to the case payment_processor: process_datacash"
-
- You cannot bind variants twice within one case.
##
#@PaymentMethod.DATACASH(’payment_processor’)
#def process_datacash_error():
pass

- Uncomment the following definition and you will get a standard AttributeError:
- "AttributeError: type object ’PaymentMethod’ has no attribute ’AMAZON’"
-
- You will have to add the AMAZON case to the PaymentMethod ADT in order to fix the error.
##
#@PaymentMethod.AMAZON(’payment_processor’)
#def process_amazon():
pass

- Uncomment the following definition and you will get a configuration error like:
- "Case withdraw_form of PaymentMethod is not exhaustive.
- Here is the variant that is not matched: CHEQUE."
-
- You will have to implement withdraw forms for all other variants - CHEQUE, DATACASH
- in order to fix the error.
##
#@PaymentMethod.PAYPAL(’withdraw_form’)
#class PaypalWitdrawForm(object):
pass
#

--
Here’s the essence of ADT from developer’s perspective
(note the absence of conditional statements such as
if:/elif:/elif:/.../else: raise NotImplementedError()
)
--

project/payments/__init__.py

from project.payments.models import PaymentMethod

def includeme(config):
RULES = {

’engine’: PaymentMethod
}
The {engine} placeholder will be replaced with the (?:paypal|cheque|bank_transfer) regex.
Note that here we use the same ADT object, that was previously used for defining
cases payment_processor and withdraw_form.
config.add_route(’payments.withdraw’, ’/payments/withdraw/{engine}’, rules=RULES)

project/payments/views.py

from rhetoric.view import view_config, view_defaults

@view_defaults(route_name=’payments.withdraw’, renderer=’json’)
class PaymentsHandler(object)

22 Chapter 10. ADT

Rhetoric Documentation, Release 0.2.0

def __init__(self, request, engine):
self.request = request
self.engine = engine
Note that we will ALWAYS have a proper match here, because this handler
will be reached with only correct HTTP requests
(i.e. engine value is one of the variant values of PaymentMethod).
self.payment_strategy = PaymentMethod.match(engine)

@view_config(request_method=’GET’, renderer=’payments/withdraw_form.html’)
def show_withdraw_form(self):

Here, ‘‘payment_strategy.withdraw_form‘‘ is one of case implementations
that we defined above with @PaymentMethod(VARIANT, ’withdraw_form’).
It always points to the relevant implementation!
form = self.payment_strategy.withdraw_form
Render html form
return {’form’: form}

@view_config(request_method)
def process_payment(request_method=’POST’):

Here, ‘‘payment_strategy.payment_processor‘‘ is one of case implementations
that we defined above with @PaymentMethod(VARIANT, ’payment_processor’).
It always points to the relevant implementation!
processor = self.payment_strategy.payment_processor
processor()
Render json response
return {’ok’: True, ’message’: ’Success.’}

23

Rhetoric Documentation, Release 0.2.0

24 Chapter 10. ADT

CHAPTER 11

Sources

Rhetoric is licensed under the MIT License.

We use GitHub as a primary code repository - https://github.com/avanov/Rhetoric

25

http://opensource.org/licenses/MIT
https://github.com/avanov/Rhetoric

Rhetoric Documentation, Release 0.2.0

26 Chapter 11. Sources

CHAPTER 12

Authors

Rhetoric package was created by Maxim Avanov.

• GitHub profile.

• Google+ profile.

27

https://github.com/avanov
https://google.com/+MaximAvanov

Rhetoric Documentation, Release 0.2.0

28 Chapter 12. Authors

CHAPTER 13

Changelog

• 0.2.0

– Ported custom predicates

– Removed support for the api_version predicate.

• 0.1.13

– Depend on Venusian 1.0 and higher.

– Allow re-assignment of the same ADT case implementations on subsequent venusian scans.

• 0.1.9

– Added support for the request.json_body property.

• 0.1.8

– Added support for the request.response API.

• 0.1.7

– Added support for the api_version predicate.

– Added the view_defaults decorator.

• 0.1.5

– Feature: added support for decorator argument of view_config.

• 0.1.4

– Feature: added support for custom renderers.

• 0.1.2

– [Bugfix #2]: resolved race condition in rhetoric.view.ViewCallback.

– [API]: rhetoric.middleware.UrlResolverMiddleware was renamed to
rhetoric.middleware.CsrfProtectedViewDispatchMiddleware.

– [Django integration]: rhetoric.middleware.CsrfProtectedViewDispatchMiddleware
should now completely substitute django.middleware.csrf.CsrfViewMiddleware in
MIDDLEWARE_CLASSES.

• 0.1.0 - initial PyPI release. Early development, unstable API.

29

http://docs.pylonsproject.org/docs/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view_predicate

Rhetoric Documentation, Release 0.2.0

30 Chapter 13. Changelog

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

31

	Why it is worth your while
	Project premises
	Installation
	Integration with Django
	Route Pattern Syntax
	View Configuration Parameters
	Non-Predicate Arguments
	Predicate Arguments

	Renderers
	Built-in renderers
	Varying Attributes of Rendered Responses
	Request properties

	Predicates
	@view_defaults Class Decorator
	ADT
	Sources
	Authors
	Changelog
	Indices and tables

